Domain Adaptive Dictionary Learning

نویسندگان

  • Qiang Qiu
  • Vishal M. Patel
  • Pavan K. Turaga
  • Rama Chellappa
چکیده

Many recent efforts have shown the effectiveness of dictionary learning methods in solving several computer vision problems. However, when designing dictionaries, training and testing domains may be different, due to different view points and illumination conditions. In this paper, we present a function learning framework for the task of transforming a dictionary learned from one visual domain to the other, while maintaining a domain-invariant sparse representation of a signal. Domain dictionaries are modeled by a linear or non-linear parametric function. The dictionary function parameters and domain-invariant sparse codes are then jointly learned by solving an optimization problem. Experiments on real datasets demonstrate the effectiveness of our approach for applications such as face recognition, pose alignment and pose estimation.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A New Method for Speech Enhancement Based on Incoherent Model Learning in Wavelet Transform Domain

Quality of speech signal significantly reduces in the presence of environmental noise signals and leads to the imperfect performance of hearing aid devices, automatic speech recognition systems, and mobile phones. In this paper, the single channel speech enhancement of the corrupted signals by the additive noise signals is considered. A dictionary-based algorithm is proposed to train the speech...

متن کامل

Speech Enhancement using Adaptive Data-Based Dictionary Learning

In this paper, a speech enhancement method based on sparse representation of data frames has been presented. Speech enhancement is one of the most applicable areas in different signal processing fields. The objective of a speech enhancement system is improvement of either intelligibility or quality of the speech signals. This process is carried out using the speech signal processing techniques ...

متن کامل

A Novel Image Denoising Method Based on Incoherent Dictionary Learning and Domain Adaptation Technique

In this paper, a new method for image denoising based on incoherent dictionary learning and domain transfer technique is proposed. The idea of using sparse representation concept is one of the most interesting areas for researchers. The goal of sparse coding is to approximately model the input data as a weighted linear combination of a small number of basis vectors. Two characteristics should b...

متن کامل

Bridging the Domain Shift by Domain Adaptive Dictionary Learning

Domain adaptation (DA) tackles the problem where data from the training set (source domain) and test set (target domain) have different underlying distributions. In this paper, we propose a novel domain-adaptive dictionary learning framework to generate a set of intermediate domains. These intermediate domains form a smooth path and bridge the gap between the source and target domains. Specific...

متن کامل

Dictionary-Based Domain Adaptation Methods for the Re-identification of Faces

Re-identification refers to the problem of recognizing a person at a different location after one has been captured by a camera at a previous location. We discuss re-identification of faces using the domain adaptation approach which tackles the problem where data in the target domain (different location) are drawn from a different distribution as the source domain (previous location), due to di...

متن کامل

Generalized Adaptive Dictionary Learning via Domain Shift Minimization

Visual data driven dictionaries have been successfully employed for various object recognition and classification tasks. However, the task becomes more challenging if the training and test data are from contrasting domains. In this paper, we propose a novel and generalized approach towards learning an adaptive and common dictionary for multiple domains. Precisely, we project the data from diffe...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012